Фазоуказатель своими руками

Фазоуказатель своими руками ispytaniya_silovogo_transformatora_tmg11-1600_kva_испытания_силового_трансформатора_тмг11-1600_кВА

Здравствуйте, уважаемые читатели и гости сайта «Заметки электрика».

На прошлой неделе мы проводили приемо-сдаточные испытания силовых масляных трансформаторов ТМГ11-1600/10-У1 на комплектной трансформаторной подстанции наружной установки (КТПН) напряжением 10/0,4 (кВ).

Представленный в статье объем приемо-сдаточных испытаний применим для всех силовых масляных (маслонаполненных) трансформаторов мощностью от 630 (кВА) до 1600 (кВА).

Для масляных трансформаторов мощностью до 630 (кВА) и более 1600 (кВА), а также для сухих трансформаторов перечень испытаний будет несколько отличаться, но об этом я расскажу Вам в следующих своих статьях с соответствующими примерами.

Напомню, что абсолютно все электрооборудование (электродвигатели, трансформаторы, выключатели, кабели и т.д.) вновь вводимое в эксплуатацию подвергается приемо-сдаточным испытаниям с целью контроля технического состояния.

Объем и нормы испытаний силовых трансформаторов указаны в ПУЭ (Глава 1.8) и РД 34.45-51.300-97 «Объем и нормы испытаний электрооборудования» (п.6). Не лишним будет заглянуть и в паспорт или руководство по эксплуатации от заводов-изготовителей, особенно, это касается иностранного или нестандартного электрооборудования. В процессе эксплуатации необходимо руководствоваться ПТЭЭП (Приложение 3, п.2), но об эксплуатационных испытаниях трансформаторов я расскажу Вам в следующий раз.

Для начала несколько слов об объекте.

Внешний вид двухтрансформаторной комплектной трансформаторной подстанции (КТПН) напряжением 10/0,4 (кВ).

ispytaniya_silovogo_transformatora_tmg11-1600_kva_испытания_силового_трансформатора_тмг11-1600_кВА_1

В КТПН установлены два трансформатора типа ТМГ11 мощностью 1600 (кВА).

ispytaniya_silovogo_transformatora_tmg11-1600_kva_испытания_силового_трансформатора_тмг11-1600_кВА_3

Расшифровка ТМГ11-1600/10-У1:

  • Т — трансформатор
  • М — масляный
  • Г — герметичный
  • 11 — серия и модификация
  • 1600 — мощность, кВА
  • 10 — номинальное напряжение, кВ
  • У1 — климатическое размещение и исполнение от -45°С до +40°С

В герметичных трансформаторах масло не сообщается с окружающим воздухом, в отличие от трансформаторов с расширителями. Герметичные трансформаторы до самой крышки заполнены маслом. За счет изменения объема гофрированных стенок бака, они выдерживают температурное расширение объема масла.

ispytaniya_silovogo_transformatora_tmg11-1600_kva_испытания_силового_трансформатора_тмг11-1600_кВА_6

Основные технические данные трансформатора ТМГ11-1600/10-У1 (фото бирки).

ispytaniya_silovogo_transformatora_tmg11-1600_kva_испытания_силового_трансформатора_тмг11-1600_кВА_2

Схема электроснабжения КТПН.

ispytaniya_silovogo_transformatora_tmg11-1600_kva_испытания_силового_трансформатора_тмг11-1600_кВА_4

Как видите, помимо двух независимых взаимно резервирующих вводов, имеется еще и третий источник питания — это дизель-генераторная установка. Ее мощность я не посмотрел, но выглядит она очень солидно, правда работает так, что уши закладывает — без берушей не обойтись.

ispytaniya_silovogo_transformatora_tmg11-1600_kva_испытания_силового_трансформатора_тмг11-1600_кВА_5

Потребителей этой КТПН, согласно ПУЭ, можно с легкостью отнести к особой группе первой категории.

 

Испытание трансформатора ТМГ11-1600

Итак, начнем по-порядку.

Я буду руководствоваться следующими НТД:

  • ПУЭ, Глава 1.8, п. 1.8.16 «Силовые трансформаторы, автотрансформаторы, масляные реакторы и заземляющие дугогасящие реакторы (дугогасящие катушки)»
  • РД 34.45-51.300-97 «Объем и нормы испытаний электрооборудования» (п.6).
  • инструкция завода-изготовителя

1. Осмотр трансформатора

При осмотре нужно уделить внимание на целостность бака и радиаторов трансформатора, состояние проходных изоляторов ВН и НН (отсутствие на них сколов и трещин), уровень масла в баке и отсутствие его течи, наличие и целостность пломб на крышке, заливочном патрубке, маслоуказателе и пробке для слива масла.

ispytaniya_silovogo_transformatora_tmg11-1600_kva_испытания_силового_трансформатора_тмг11-1600_кВА_7

ispytaniya_silovogo_transformatora_tmg11

Поплавок красного цвета в маслоуказателе должен быть не ниже отметки «А» — это символизирует о том, что уровень масла в норме.

ispytaniya_silovogo_transformatora_tmg11

Обязательно убедитесь, что корпус трансформатора заземлен.

ispytaniya_silovogo_transformatora_tmg11-1600_kva_испытания_силового_трансформатора_тмг11-1600_кВА_8

В моем примере корпус трансформатора заземлен на контур заземляющего устройства (ЗУ) подстанции.

ispytaniya_silovogo_transformatora_tmg11-1600_kva_испытания_силового_трансформатора_тмг11-1600_кВА_9

Однажды, при испытаниях подобного трансформатора ТМГ11, только чуть меньшей мощности, я обнаружил, что заземление его корпуса имелось, а вот заземление нейтрали монтажники сделать забыли. Была бы сейчас у потребителя не глухозаземленная нейтраль TN, а изолированная — IT.

ispytaniya_silovogo_transformatora_tmg11

ispytaniya_silovogo_transformatora_tmg11

2. Определение условий включения трансформаторов без сушки

Условия включения трансформаторов без сушки указаны в инструкции завода-изготовителя. В инструкции сказано, что вновь вводимый в работу трансформатор ТМГ11 может быть включен без сушки при соответствии сопротивления изоляции обмоток ВН и НН.

Таким образом, получается, что  трансформатор допускается включать без сушки, если сопротивление изоляции обмоток ВН и НН за время 1 минуту (R60) будет соответствовать нормам действующих нормативно-технических документов (их список я указал чуть выше по тексту).

3. Измерение сопротивления изоляции обмоток трансформатора

Все испытания должны быть проведены в нормальных условиях окружающего воздуха.

Для замера сопротивления изоляции обмоток необходим мегаомметр с напряжением 2500 (В). В парке приборов нашей электролаборатории имеются следующие типы мегаомметров:

  • М4100/5 напряжением 2500 (В)
  • ЭСО202/2 напряжением от 500-2500 (В)
  • Ф4102/1-1М напряжением от 500-2500 (В)
  • MIC-2500 напряжением от 50-2500 (В)

Из них я лично предпочитаю М4100/5 в карболитовом «чемоданчике» и MIC-2500 от Sonel.

ispytaniya_silovogo_transformatora_tmg11-1600_kva_испытания_силового_трансформатора_тмг11-1600_кВА_22

ispytaniya_silovogo_transformatora_tmg11-1600_kva_испытания_силового_трансформатора_тмг11-1600_кВА_23

ispytaniya_silovogo_transformatora_tmg11-1600_kva_испытания_силового_трансформатора_тмг11-1600_кВА_15

Единственным минусом MIC-2500 является то, что на дальних подстанциях при больших количествах замеров у него совсем не вовремя может разрядиться аккумулятор, в остальном — только плюсы. Например, MIC-2500 может автоматически разряжать линию после замера, что очень удобно в плане электробезопасности. Поэтому на дальние подстанции для испытаний я всегда с собой беру сразу оба мегаомметра.

Производить замер сопротивления изоляции необходимо при температуре обмоток трансформатора не ниже 10°С. Если температура ниже 10°С, то трансформатор следует нагреть в теплом помещении, электропечью или индукционным методом. Температуру обмоток можно определять по температуре верхних слоев масла, т.е. можно ориентироваться по жидкостному термометру.

В моем случае температура обмоток составляет около 30°С.

ispytaniya_silovogo_transformatora_tmg11

Минимальные значения сопротивления изоляции, в зависимости от температуры обмоток приведены в таблице. Она подходит для всех масляных трансформаторов напряжением до 35 (кВ) включительно мощностью до 10 (МВА):

ispytaniya_silovogo_transformatora_tmg11

Испытуемый трансформатор ТМГ11 является двухобмоточным, поэтому замер сопротивления изоляции будем проводить по следующей схеме:

  • ВН — земля
  • НН — земля
  • ВН — НН

При проведении измерения все не испытуемые обмотки и бак трансформатора нужно заземлять.

Согласно вышеприведенной таблицы, при температуре 30°С сопротивление изоляции обмоток должно быть не менее 200 (МОм). Вот, что у меня получилось:

ispytaniya_silovogo_transformatora_tmg11

Как видите, сопротивление изоляции у обмоток ВН и НН трансформатора находится в норме (см. графу R60), причем даже с очень большим запасом.

Помимо сопротивления изоляции обмоток трансформатора (R60), я решил измерить его коэффициент абсорбции (R60/R15). По показаниям коэффициента абсорбции можно сделать выводы об увлажненности обмоток трансформатора и необходимости его сушки.

Коэффициент абсорбции вычисляется следующим образом. Сначала измеряется величина сопротивления изоляции обмотки за время 15 секунд (R15), затем измеряется сопротивление изоляции этой же обмотки, только за время 60 секунд (R60). После этого значение (R60) делится на значение (R15). Это не обязательный замер для нашего случая, но им я никогда не пренебрегаю, тем более с помощью MIC-2500 делается это быстро и полностью автоматически.

Коэффициенты абсорбции (R60/R15) обмоток ВН и НН испытываемого трансформатора ТМГ11 находятся в пределах нормы. Напомню, что минимальный уровень этого коэффициента для трансформаторов должен быть не ниже 1,3.

4. Измерение сопротивления обмоток постоянному току

Для проведения этого измерения в нашей ЭТЛ имеется прибор-микроомметр MMR-600 от Sonel, правда пару лет назад мне его пришлось перепрошить для проведения замеров сопротивления обмоток с гораздо большей индуктивностью, нежели это было изначально заложено в приборе.

Внешний вид MMR-600.

ispytaniya_silovogo_transformatora_tmg11-1600_kva_испытания_силового_трансформатора_тмг11-1600_кВА_18

До этого очень долгое время мы пользовались миллиомметром ИТА-2, но на последней поверке его забраковали по нескольким пределам измерений, поэтому сейчас мы его практически не применяем.

ispytaniya_silovogo_transformatora_tmg11-1600_kva_испытания_силового_трансформатора_тмг11-1600_кВА_19

Кстати, при замере сопротивления с помощью ИТА-2 процесс измерения шел очень долго по сравнению с ММR-600. Из-за большой индуктивности обмоток трансформатора ИТА-2 долгое время устанавливал значение — приходилось ждать по несколько десятков минут, да к тому же и показания у него несколько «плавали».

Замер сопротивления обмоток постоянному току необходимо проводить при установившейся температуре трансформатора на всех ответвлениях обмоток.

На крышке трансформатора расположен переключатель ответвлений обмоток типа ПТРЛ-10/125-6-96У1. Данное обозначение расшифровывается, как П — переключатель, Т — трехфазный, Р- тип переключателя (реечный), Л — лимбовый привод, 10 — класс напряжения.

Регулирование напряжения происходит в ручную по высокой стороне (ВН) в пределах от -5% до +5% от номинального напряжения 10 (кВ) без возбуждения (ПБВ), т.е. при обязательном отключении трансформатора от сети, причем как по высокой стороне, так и по низкой.

ispytaniya_silovogo_transformatora_tmg11-1600_kva_испытания_силового_трансформатора_тмг11-1600_кВА_24

Всего имеется 5 ступеней переключения:

  • I (+5%)
  • II (+2,5%)
  • III 10000 (В)
  • IV (-2,5%)
  • V (-5%)

Вот схема соединения ответвлений обмоток (схема «звезда» без нуля):

ispytaniya_silovogo_transformatora_tmg11-1600_kva_испытания_силового_трансформатора_тмг11-1600_кВА_25

На схеме изображено первое положение I (+5%). При переключении на второе и последующие положения сопротивление обмоток будет уменьшаться.

Фиксация положения переключателя осуществляется специальным фиксирующим устройством, расположенным в приводе внутри бака трансформатора, и винтом с контргайкой, расположенными в рукоятке привода.

Чтобы переключить ступень, на рукоятке необходимо отвернуть контргайку винта и вывернуть его вверх. Затем нужно повернуть рукоятку переключателя до требуемого положения, ориентируясь по стрелке указателя, завернуть винт до упора и убедиться, что он зашел в отверстие указателя, после чего завернуть контргайку.

ispytaniya_silovogo_transformatora_tmg11-1600_kva_испытания_силового_трансформатора_тмг11-1600_кВА_26

Рекомендую: в отдельной статье познакомиться с устройством и принципом работы реечного переключателя ПТРЛ.

За отсчет температуры можно аналогично, как и при замере сопротивления изоляции, принимать температуру в верхних слоях масла по жидкостному термометру.

ispytaniya_silovogo_transformatora_tmg11

Полученное значение сопротивления не должно отличаться более, чем на 2% от полученных значений сопротивлений соседних фаз на одном ответвлении обмоток. Также полученные значения можно сравнить с заводскими (паспортными) величинами, но порой в паспорте эти данные отсутствуют.

ispytaniya_silovogo_transformatora_tmg11-1600_kva_испытания_силового_трансформатора_тмг11-1600_кВА_29

Вот, что у меня получилось.

Обмотка ВН:

ispytaniya_silovogo_transformatora_tmg11-1600_kva_испытания_силового_трансформатора_тмг11-1600_кВА_27

В первом положении максимальная разница между сопротивлениями получилась 0,42%, во втором — 0,64%, в третьем — 0%, в четвертом — 1,39%, в пятом — 1,71% . Как видите, полученные показания соответствуют норме 2%.

pereklyuchatel_obmotok_pbv_переключатель_обмоток_пбв_3

Обмотка НН:

ispytaniya_silovogo_transformatora_tmg11-1600_kva_испытания_силового_трансформатора_тмг11-1600_кВА_28

Разницы сопротивлений по низкой стороне (НН), как видите, нет.

5. Испытание трансформаторного масла

Согласно заводской инструкции, у трансформатора ТМГ11 запрещено нарушать его герметичность путем открывания сливных пробок на баке, кранов, патрубков на крышке, снятия изоляторов и маслоуказателя (не зря же на них установлены пломбы). Вообщем запрещено совершать любые действия, которые могут нарушить его уплотнения, т.е. нарушить герметичность бака.

В связи с этим отбор пробы трансформаторного масла на испытание у герметичных трансформаторов проводить запрещено.

6. Испытания повышенным напряжением

Согласно ПУЭ, проводить испытание повышенным напряжением обмоток по отношению к корпусу и другим его обмоткам у маслонаполненных трансформаторов не обязательно, т.е. для нашего ТМГ11 мощностью 1600 (кВА) это испытание является не обязательным. Это же подтверждается инструкцией завода-изготовителя, где сказано, что проводить испытания повышенным напряжением без согласования с производителем запрещено.

На этом приемо-сдаточные испытания силового трансформатора ТМГ-11 можно считать завершенными. Если хоть один измеренный параметр не будет входить в норму, то такой трансформатор запрещено вводить в эксплуатацию.

После проведения испытаний трансформатора оформляется протокол, установленной и утвержденной формы. Напомню, что испытывать силовой трансформатор теоретически могут все, а вот право выдачи протоколов имеет только электролаборатория (читайте статью о необходимости регистрации ЭТЛ).

7. Включение трансформатора в сеть

После всех проведенных испытаний, трансформатор необходимо включить в сеть толчком на номинальное напряжение 10 (кВ) на время не менее 30 минут. Согласно ПТЭЭП (п.1.3.7) опробование считается проведенным, если трансформатор проработал непрерывно и без замечаний в течение 72 часов. Поэтому в течение 72 часов слушаем и наблюдаем за работой трансформатора.

Затем необходимо проверить фазировку. Сейчас на фазировке я подробно останавливаться не буду — это тема отдельной статьи со своими нюансами. Скажу вкратце, что при фазировке должно иметь место совпадения по фазам между двумя источниками питания. Для фазировки до 500 (В) я использую двухполюсные указатели напряжения, например, ПИН-90М, или специальные вольтметры с соединительными проводами.

Указатель низкого напряжения

Для фазировки со стороны 10 (кВ) мы применяем вот такой высоковольтный указатель УВН-10 с дополнительной трубкой для фазировки (ТФ).

ispytaniya_silovogo_transformatora_tmg11-1600_kva_испытания_силового_трансформатора_тмг11-1600_кВА_30

После фазировки, при необходимости, можно проверить и чередование фаз. Для этого у меня есть два прибора:

Периодичность испытания силовых трансформаторов определяет технический руководитель организации или предприятия в зависимости от состояния и результатов диагностического контроля (ПТЭЭП, п.2.1.36).

Если трансформатор во время работы отключился от газовой защиты или любой другой защиты от внутренних повреждений, например, от дифзащиты, то вводить его в работу допускается только после осмотра, проведения ряда эксплуатационных испытаний, в том числе и испытание масла, и устранения выявленных неисправностей и повреждений.

P.S. На этом все. Статья получилась достаточной объемной и даже немного больше, чем наша методика испытания силовых трансформаторов. Спасибо за внимание. Будут вопросы — спрашивайте.

Если статья была Вам полезна, то поделитесь ей со своими друзьями:


Фазоуказатель своими руками фото. Поделитесь новостью Фазоуказатель своими руками с друзьями!
Фазоуказатель своими руками 44
Фазоуказатель своими руками 22
Фазоуказатель своими руками 93
Фазоуказатель своими руками 49
Фазоуказатель своими руками 82
Фазоуказатель своими руками 40
Фазоуказатель своими руками 4
Фазоуказатель своими руками 60
Фазоуказатель своими руками 92
Фазоуказатель своими руками 81
Фазоуказатель своими руками 25
Фазоуказатель своими руками 75
Фазоуказатель своими руками 43
Фазоуказатель своими руками 93
Фазоуказатель своими руками 21
Фазоуказатель своими руками 51
Фазоуказатель своими руками 93
Фазоуказатель своими руками 5
Фазоуказатель своими руками 58
Фазоуказатель своими руками 51